0=(x^2)+(0.32x)-0.84

Simple and best practice solution for 0=(x^2)+(0.32x)-0.84 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(x^2)+(0.32x)-0.84 equation:



0=(x^2)+(0.32x)-0.84
We move all terms to the left:
0-((x^2)+(0.32x)-0.84)=0
We add all the numbers together, and all the variables
-(x^2+(+0.32x)-0.84)+0=0
We add all the numbers together, and all the variables
-(x^2+(+0.32x)-0.84)=0
We calculate terms in parentheses: -(x^2+(+0.32x)-0.84), so:
x^2+(+0.32x)-0.84
We get rid of parentheses
x^2+0.32x-0.84
Back to the equation:
-(x^2+0.32x-0.84)
We get rid of parentheses
-x^2-0.32x+0.84=0
We add all the numbers together, and all the variables
-1x^2-0.32x+0.84=0
a = -1; b = -0.32; c = +0.84;
Δ = b2-4ac
Δ = -0.322-4·(-1)·0.84
Δ = 3.4624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.32)-\sqrt{3.4624}}{2*-1}=\frac{0.32-\sqrt{3.4624}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.32)+\sqrt{3.4624}}{2*-1}=\frac{0.32+\sqrt{3.4624}}{-2} $

See similar equations:

| 6x+4=5x-8-13x | | 4/5w+13=25 | | 4z-8+1z=-13 | | 2(2x+5)=6x+9-2x+1 | | x/11=257 | | 4x=90−6x | | 9+6j=6 | | b/4-8=-13 | | 0.2x+0.75=0.5 | | 9e-16=29 | | 8x^2+24x+36=0 | | 2x+50=10x+18 | | y+9y+18y=0 | | 5/6x-1/9x=-102 | | 4z-8+1z=13 | | 35/4=c-8/2 | | 4.8*x=23.04 | | 4.9x+2.6x-19.25=-0.2x | | 4x-16+5x=24 | | 4=18m | | -y+291=113 | | 4x−16+5x=24 | | 112x+37=180 | | 7.5x+90=360 | | 37x+112=180 | | 9n+4=14 | | 3-12=12-2x | | 8x=10x^2 | | n/5=23.4-2 | | 10x2+26x=-16 | | 4(d+7)=8 | | 5/7d-1/2=1/3 |

Equations solver categories